Heat Transfer to the Structure During the Fire

Dr. Allan Jowsey,

Prof. José L. Torero, Dr. Barbara Lane

14th November 2007

The Dalmarnock Fire Tests: Experiments and Modelling

Introduction

- Modern quantitative structural fire engineering
 - Using emerging tools within a comprehensive analysis format
- Methodology for analysis
- Focus on heat transfer to structural elements
 - New tool to evaluate to structural heat fluxes using compartment fire models
- Application to the post-flashover Dalmarnock Fire Test
 - Time varying heat flux distributions

Background

- Average compartment temperature
- Single element testing
 - Fire ratings / fire protection
- Modern methods
- Full spatial resolution

Heat Transfer to Structural Elements

- Post-processing tool for any CFD model
- Evaluates total surface heat fluxes based on localised gas conditions
 - Radiation smoke layer properties
 - Directionality
 - Extinction coefficient
 - Temperature
 - Convection
 - Velocity of gas and its direction
 - Length-scale

Heat Transfer to Structural Elements

- Simplicity allows any structural geometry to be modelled
- Heat fluxes evaluated considering: -
 - Characteristic heating time-scales
 - Different material behaviour
- Full resolution can be captured
- Heat flux vs. time curves to be passed to a member conduction analysis and / or a mechanical analysis
 - Uncoupled process, but remains simplified

Heat Transfer to Structural Elements

Problems associated with grid size and structural elements

Radiation Within the Model

Defined by optical limits within the smoke (post-flashover)

Hemispherical Method

- Only a knowledge of the extinction coefficient and temperature is required to evaluate the incident radiation
- Only a certain radius needs consideration

Hemispherical Method

- A series of shells are analysed
- Each shell surface has a uniform extinction coefficient and temperature
- Summation of contributions from each shell defines radiative intensity

$$I = I_0 e^{-\kappa L}$$

$$I = I_0 e^{-\kappa L}$$

$$I_0 = \varepsilon_g \sigma T_g^4$$

$$I = \sum_{n=1}^{n} I_{0,r} e^{-\kappa_r r} = \sum_{n=1}^{n} \varepsilon_{g,r} \sigma T_{g,r} e^{-\kappa_r r}$$

Path Length Definition

Proposed error limit defines calculation path length

Convection Within the Model

- Important for members with small length-scale complex geometries
- Definition of the heat transfer coefficient

Characteristic Heating Times

Dalmarnock Fire Tests

- Typical office fire load
- Detailed fire environment measurements taken
- Sustained post-flashover period

CFD Modelling of the Dalmarnock Tests

FDS used as the CFD model

Compartment layout

- Not a validation of FDS!
- Simplified HRR applied to the sofa
- Flame spread definition
 - Ignition heat flux of 20kW/m²
 - Representative HRR

Matching Results for Post-Flashover

Average compartment gas temperature (°C)

Average temperature can hide important variations in fire severity

 Misleading results

Total Heat Flux on the Rear Wall

Highest heat fluxes above the book case

Severe fluxes due to the fire forced into the upper left corner of the room

- Ventilation conditions
- Effects of wind

Total incident heat flux kW/m² at t = 15 minutes

Total Heat Flux Histories – Rear Wall

Good agreement with test data at higher locations on the wall due to the dense smoke in this location

Total Heat Flux on the Ceiling

Large gradient in total heat flux from front to rear of compartment

Combination of ventilation and burning objects resulting in the fire localising at the rear left corner

Total incident heat flux kW/m² at t = 15 minutes

Total Heat Flux Histories – Ceiling

Good agreement with test data at the rear of the compartment due to effects of ventilation

ARUP

50

Summary

- Model to define total heat flux to a structural element based on CFD simulations
 - Radiative and convective contributions
 - Member geometry
 - Material of the element
- Application of the model to the Dalmarnock Fire Test
 - Validation against test data good agreement for post-flashover
 - Structural fire design applications
- Large spatial and temporal distributions demonstrated within a fully-developed fire
 - Applicability of a single temperature-time curve?

