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ABSTRACT  
 
Determining high performance strategies for the long term use and deployment of Fire Brigade 
resources in order to minimise the risk of loss of life and property is a highly complex problem.  
Software is available to allow fire Brigades to investigate the effectiveness of different strategies and 
deployments of resources (e.g. station and appliance location, staffing levels etc).  This software 
(FSEC – Fire Service Emergency Cover toolkit) contains the information and procedures needed to 
define the risks, operation and geographical relationships for a given Fire Brigade, but only allows the 
evaluation of one solution at a time with no provision for searching for high performance solutions.  
To manually evaluate all potential solutions (totalling around 1055 for a typical brigade) is impossible 
in terms of time, even if it only took a few seconds to evaluate each solution. 
 
This paper describes the development of a method to locate high performance solutions for the 
deployment of Fire Brigade resources, using Evolutionary Algorithms in conjunction with the FSEC 
Toolkit.  Such algorithms allow the relatively rapid identification of areas of good potential solutions 
by sampling only a small percentage of the total search space.  In order to achieve this, the FSEC 
software is being re-written in a more computationally efficient manner.  This will then be coupled 
with an Evolutionary Algorithm in order to identify suitable solutions to the problem. 
 
 
INTRODUCTION 
 
In 1995, the Audit Commission report, “In the Line of Fire” [1] recommended that the Fire and 
Rescue Service should look at measures for preventing fires as well as response to incidents, with less 
emphasis on the value of property and more on the saving of lives.  Following this it was suggested [2] 
that a new risk-based approach be investigated which additionally included the work of the fire service 
in dealing with incidents such as road traffic accidents (so called special services).  The result of this 
was the development of a new risk-based assessment toolkit, which forms the basis of the FSEC 
software currently used by brigades to assess the effectiveness of their resource allocation and 
response strategies.   
 
However before considering the development of optimisation software based on FSEC, which is the 
subject of the current research programme, it is first instructive to gauge the size of the problem by 
estimating the number of possible solutions, and the feasibility (or otherwise) of evaluating these 
potential solutions using the currently available tools.  In this case, the number of potential solutions is 
given by the number of specific ways in which a Fire and Rescue Service can organise the resources 
available to them.  For example, the South Wales Fire and Rescue Service has 50 fire stations 
comprising 19 wholetime stations, 5 day-crewed and 26 retained stations, employing approximately 
1000 full-time firefighters and 600 retained firefighters.   
 
In using the decision making tools being developed in this project, a brigade may wish to consider the 
potential to open new stations or move existing ones.  Continuing the South Wales example, it is 
assumed that a further 20 potential sites for new or re-located fire stations have been identified, giving 
a total of 70 potential locations for active fire stations.  Presuming that the brigade wishes to maintain 



the number of active stations at 50, then the number of ways in which 50 stations may be chosen from 
70 sites must be calculated.  The total number of combinations, Ns, assuming that order is unimportant 
(having stations A, B and C open is the same and having stations C, B and A open), is given by 
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At a conservative estimate, each open station could have around 6 different vehicle or staffing 
combinations.  For example, the station may be manned on a wholetime or retained basis, with a range 
of different vehicle types.  Thus, for each selection of fifty station sites, the number of different 
configurations which may be achieved, Nc, is approximately 650 (≈ 1038).  Thus the total potential 
configurations, N, for the South Wales brigade example is given by 
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Thus it may be seen that the number of possible solutions for the configuration of a typical fire brigade 
area is truly massive. 
 
Taking a simpler example, such as a medium-sized city like Cardiff, with 4 fire stations and a further 4 
possible station sites, still results in a total number of solutions which is approximately 105.  Of course, 
it is likely that there are a number of very similar solutions within these totals, with some solutions 
which are not practical to implement.  Even allowing for these, and given that the FSEC model 
execution times are substantial (around 27 minutes for a typical brigade), the total number of potential 
solutions is still far above that which it is possible to evaluate by exhaustive search using the existing 
software. Therefore the only feasible way to locate good solutions (we prefer not to use the word 
optimal) is to use some form of search algorithm such as an evolutionary algorithm.   These algorithms 
are very efficient at searching complex, highly constrained and multi-objective search spaces and can 
find areas of high performance by sampling a very small percentage of the search space. 
 
 
EVOLUTIONARY ALGORITHMS 
 
Optimization algorithms typically need a fully defined objective function complete with whatever 
constraints need to be applied. Also, many algorithms have problems with complex search spaces 
containing many local optima because they become “stuck” on one of many peaks within a complex 
search space. There is however a class of algorithms which can search with less well defined gradient 
information than that provided by an objective function by using instead a so called fitness function 
[3,4]. All that is required to form a fitness function is the ability to judge whether one solution is better 
than another. These algorithms also use a population of solutions to enable them to sample widely 
across the search space and hence they are much better at avoiding local optima. The algorithms are 
known collectively as Evolutionary Algorithms (EA) because they typically employ search techniques 
which are analogous to natural processes.  For example genetic algorithms and genetic programming 
[3,5] mimic Darwinian evolution and Particle Swarm Analysis [6] mimics the behaviour of a flock of 
birds. EA have been applied to many complex decision making problems and found to perform well. 
 
As an example of an evolutionary algorithm, the typical architecture of a genetic algorithm is shown in 
Figure 1.  As shown, the process starts with the creation, usually at random, of an initial population, 
whose size represents only a small fraction of the total number of potential solutions. Each member of 
the population represents a potential solution to the problem being considered.  Searching for a 
solution(s) using a population means that at each step, a genetic algorithm samples as many points 
within the search space as there are members of the population (assuming no two members are 
identical). This is one of the strengths of a genetic algorithm, enabling it to sample widely throughout 
the search space and identify areas of high performance (i.e. good solutions) on which the search can 



start to converge. The use of a population enables multiple high performance areas to be identified and 
helps the genetic algorithm to avoid convergence on local optima. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Genetic Algorithm architecture 
 
 
Once the initial population is established, the basic process of the genetic algorithm is to adapt and 
modify the members of the population based on feedback relating to how good a solution each 
member of the population is, until one or more good solutions are found. The judgement of how well 
each member of the population performs is undertaken by the fitness function. The adaptation and 
modification is then undertaken by the other processes shown in Figure 1 and there is an iterative 
procedure, represented by the loop, which continues until some convergence criterion is satisfied.  The 
process is analogous to Darwinian evolution in that there is a population of solutions.  These solutions 
are subject to an environment (the fitness function) which tends to favour the reproduction of the 
solutions which are best suited to that environment. Hence solutions which suit the defined 
environment are evolved over a number of iterations (called generations). 
 
Another feature of evolutionary algorithms is their ability to handle constraints and also to deal with 
conflicting constraints. The way this is typically achieved is to include the constraints in the fitness 
function and then to penalise those solutions which fail to meet one or more constraints. Also 
evolutionary algorithms cope well with multi-objective problems [7]. 
 
EA are very efficient at searching massive search spaces (e.g. 1084

 feasible solutions [8]).  To do so 
they only need to look at a very small fraction of the total number of solutions and although they 
cannot be guaranteed to find the absolute optimum, they are very good at finding areas of high 
performance within the search space. Each time that an EA examines a solution it runs its fitness 
function. In this work the fitness function is FSEC so for each EA run it will be necessary to run FSEC 
several hundred times for each run of the EA. As FSEC execution times are lengthy, this is a 
significant challenge, which is discussed later in this paper. 
 
Examples of the domains to which EA have been applied include, Engineering Design [3, 9, 10], 
manufacturing scheduling [11], controlling steel rolling mills [12], the rehabilitation of water networks 
[8] and the analysis of ultra sound images [13]. All these problems are multi-objective and highly 
complex with many feasible options. Many contain both continuous and discrete variables, have non-
linear search spaces with insufficient information to form an objective function and for all of them EA 
have been found to perform well. 
 
Given their ability to cope with complex, multi-objective, highly constrained search spaces while 
avoiding becoming trapped on local optima, EA are potentially an excellent addition to the FSEC 
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toolkit which currently can only be used to evaluate a single strategy in each run. They will allow the 
user to identify the complete range of high performance strategies and look at the trade offs between 
the various objectives. 
 
A genetic algorithm has been developed for this project using Fortran 90.  The algorithm conforms, in 
its basic structure, to that shown in Figure 1 and has been tested using a range of test functions where 
the solution is known.  Figure 2 shows the evolution of the maximum population fitness with 
generation, as a typical optimisation run proceeds.   
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Figure 2: Example of change in maximum fitness with generation 
 

In this case, the algorithm was being tested using sin(x) as a very simple fitness function.  The problem 
was to optimize sin(x) where x lies within the range 0,π.  The known solution is that sin(x) reaches a 
maximum value of 1 when x = π/2.  Figure 2 shows that the maximum fitness rapidly reaches 
reasonably good solutions (i.e. where sin(x) > 0.9) within approximately 20 generations, and then 
takes approximately 100 further generations to find the absolute maximum solution to the problem. 
This is for a case where the answer is known, but for examples where the answer is not known, one 
would hope that the change in fitness will follow a similar path although to some extent this is a 
function of the problem space.  This algorithm will be further developed for the fire resource 
optimisation problem, although work to date has concentrated on the development of FSEC for use as 
a fitness function. 
 
 
DEVELOPMENT OF FSEC TOOLKIT FOR USE AS A FITNESS FUNCTION 
 
As part of the optimisation algorithm, it in necessary to evaluate the effectiveness of potential 
solutions generated by the algorithm via the use of a “fitness function” – in this case this function must 
give a measure of how effective is the emergency response, given a particular configuration of fire 
service resources.   
 
The software currently used by the Fire Service to investigate response strategies, the Fire Service 
Emergency Toolkit (FSEC) [14], was introduced to the UK’s Fire and Rescue Services in 2004 
following an extensive development programme.  FSEC is based on the Wings32 geographical 



information system, which allows FSEC to model the geographical relationships of a brigade’s ground 
including travel times, census data, information relating to property types, the location of historical 
incidents and the location of fire stations and their current staffing and facilities.  FSEC uses bespoke 
software to calculate the probable life losses and property damage based on a particular response 
strategy.  The basis of these calculations is a derived relationship between response time and fatality 
rate for each of the major types of emergency faced by the Fire Service.  There are four main types of 
incident considered by FSEC: 
 

• Dwellings fires 
• Special Services (including road traffic accidents) 
• Other buildings incidents 
• Major incidents (such as terrorist attacks, major chemical incidents etc) 

 
Each of these incidents is considered in a separate software module within FSEC.  The first module 
considers the risk to life caused by fires in the home.  In this module, calculations are based on data 
available for actual dwelling fire incidents, the number of residents and a mathematic relationship 
between response times and fatality rates.  Calculations within all modules of FSEC are based around 
small geographical areas known as Output Areas.  In order to ensure a statistically robust estimate of 
casualty rates based on incident data, these small Output Areas are grouped into larger areas of similar 
risk based on socio-demographic data.  In the event that it is not possible to form statistically robust 
areas, FSEC combines the incident data with elements of the Census information (which has been 
shown to correlate strongly with the rate of fire).  Similar grouping procedures in order to achieve 
statistically robust data are used in each of the four FSEC modules.  In addition to the model results, 
FSEC allows the user to observe the locations of fires from the incident data, in order to identify 
clusters of fires and appropriately target fire prevention measures. 
 
The Special Services module considers nine types of incident, including road traffic accidents, lock 
in/out and ladder rescues.  The casualty risk for these incidents is calculated based on the historical 
occurrence of such incidents per square kilometre.  Again, hotspots of incidents can be identified 
within the software. 
 
The third module, Other Buildings, calculates the risks to life and property in types of building other 
than dwellings.  Here, the risk assessment is based on the numbers of each building type within the 
output area, their individual risk and occupancy type.  Research based on national data has calculated 
the probability of a fire within each building type, and this is used together with data from the Fire 
Service’s fire safety inspections and other sources as appropriate to calculate the risk to both life and 
property within the individual Output Area.   
 
The Major Incidents module considers the risks from seven types of major incident, including aircraft 
crashes, major road/rail accidents, bombing and flooding incidents.  The risk of each type of incident 
is calculated using national statistics. 
 
The locations of each fire station and their allocated vehicle and firefighter resources are set up within 
FSEC, and the software calculates the time taken for each vehicle to arrive at each Output Area within 
the brigade.  This is done using a mathematical model of the road network, and takes into account the 
turn-out time for a particular vehicle, travel time and the vehicles speed relative to the allowable road 
speed.  From the calculated response times, FSEC uses mathematic relationships between vehicle 
response time and fatality rate to determine the number of lives lost in dwelling fires, special service 
incidents and other buildings fires, together with the property damage caused by other buildings fires.   
 
Cost-benefit analyses are then performed which compare the results of the strategy being considered 
with the base-case results obtained using the current Fire Service configuration.  However, FSEC is 
limited in that it is only possible to evaluate one potential solution at a time, and the evaluation of a 
range of alternative strategies is time consuming.  In addition, it is graphics-based and as such has 
relatively long execution times.  Thus the current FSEC software is not directly suitable for use as a 



fitness function, even taking into account the fact that an evolutionary algorithm can identify near-
optimal solutions to a problem by only sampling a small percentage of the total number of solutions.   
 
Therefore, the core of FSEC has been re-written for this work as a more computationally efficient 
Fortran-based software code, which is suitable for use with an evolutionary algorithm.  The strategy 
employed is explained in Figure 3. 
 

 
 

Figure 3:  New model strategy 
 
The original FSEC software is used as a “pre-processor” to perform the statistical calculations 
necessary in order to provide robust incident rates based on incident data.  Since these calculations are 
not influenced by the configuration of fire service resources, it is only necessary to perform these pre-
processing operations once for a particular run of the optimisation routine.  Once the pre-processing is 
complete, the data is transferred to the core model, written specifically for this project in Fortran 90.  
The core model is based on the same methods and mathematic relationships as FSEC uses, but has 
been re-written in order to achieve sufficiently short execution times to allow its repeated use as a 
fitness function within an optimisation routine.  The code examines the current station and vehicle 
configuration strategy, and calculates arrival times using basic road network information produced 
during the pre-processing phase together with individual vehicle details.  From this, a mathematical 
relationship is used to calculate the likely fatalities and property loss levels based on the calculated 
vehicle arrival times.  All calculations which depend on the particular resource / fire station 
configuration being examined are contained within the core model. 
 
The execution times for the improved Fortran model are significantly reduced when compared to the 
original FSEC times.  For example, a typical brigade FSEC model takes approximately 27.2 minutes 
to execute on a 2.8GHz Pentium 4 PC.  The Fortran core model takes around 18 seconds to execute for 
the same data-set.  Thus, the savings in computer time when evaluating a range of configurations 
within an optimisation routine can be seen.  For example, to evaluate 500 different station or vehicle 
configurations within the original FSEC software would take some 226.7 hours of CPU time, plus the 
time taken to set-up each configuration within the software.  In contrast, to evaluate the same 500 
configurations using the new model would require one run of the original FSEC software (as a pre-
processor) followed by 500 runs of the Fortran code, giving a total of 2.95 hours – representing a 
98.7% time saving. 
 
 
DISCUSSION AND CONCLUSIONS 
 
Work is currently on-going to continue the development of the FSEC-based optimisation routine 
described in this paper.  Following final validation of the Fortran “core” model, it will be coupled to 
the evolutionary algorithm, as described, and used to solve a range of Fire and Rescue Service 
optimisation problems in order to demonstrate the suitability of the technology to discover high 
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performance configurations for the Fire Service resources.  Discussions are currently ongoing with a 
number of UK Fire and Rescue Services regarding the use of real FSEC brigade data to test the 
optimisation algorithm. 
Conclusions which may be drawn at this stage of the work are: 
 

• The problem of optimising the configuration of Fire Service resources is a highly complex 
problem 

• There is a massive number of potential solutions 
• It is not possible to evaluate all of these solutions in order to find high performance ones 
• Evolutionary algorithms offer many advantages in dealing with huge, highly complex 

problems such as this 
• A more computationally efficient version of the core features of FSEC has been developed in 

Fortran, and has suitable execution times to enable its use as the fitness function for an 
evolutionary algorithm 

• Work is ongoing to couple the core FSEC model with a genetic algorithm 
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